Catalyst deactivation is an inevitable phenomenon in many catalytic processes, and its management is crucial for ensuring the sustainability and economic viability of industrial operations. Deactivation can result from several factors, including mechanical wear, changes in the catalyst structure, and the presence of contaminants. Among the most common causes of deactivation are poisoning, where harmful substances bind to active sites, and sintering, which leads to the coalescence of metal particles, reducing surface area and catalytic efficiency. Additionally, fouling, caused by the buildup of carbon or other materials on the catalyst surface, can impair reactant access to active sites. Catalyst regeneration aims to restore or improve the catalyst's performance, and it can be accomplished through several methods, including thermal regeneration, chemical treatment, and washing with solvents.
For example, in the case of carbon deposition, oxidative regeneration can burn off the carbon, while for poisoning, treatments may include the use of reducing agents or solvents that remove the poisons. Catalyst deactivation and regeneration also involve designing catalysts with greater resistance to deactivation. Research is focused on developing catalysts with more stable surface structures or incorporating protective coatings to reduce the effects of deactivation.
Title : A desirable framework for establishing a resource circulation society
Dai Yeun Jeong, Jeju National University, Korea, Republic of
Title : Design of efficient and stable structured catalysts for biofuels transformation into syngas by using advanced technologies of nanocomposite active components synthesis, supporting on heat conducting substrates and sintering
Vladislav Sadykov, Novosibirsk State University, Russian Federation
Title : Dipotassium cobalt pyrophosphate: From solid-state synthesis to the assessment of K2CoP2O7 for the oxidative degradation of methylene blue
Nora Elouhabi, Ibn Tofail University, Morocco
Title : Personalized and Precision Medicine (PPM) as a unique healthcare model through Bi-odesign-Inspired Bio- and chemical engineering applications to secure the human healthcare and biosafety: Engineering of biocatalysts - from evolution to creation
Sergey Suchkov, R&D Director of the National Center for Human Photosynthesis, Mexico
Title : Enhanced photocatalytic activities of NaLi1.07Co2.94(MoO4)5 nanoparticles under solar light
Rawia Nasri, University of Tunis El Manar, Tunisia
Title : Sulfur-doped geometry-tunable carbon nitride nanotubes with high crystallinity for visible light nitrogen fixation
Yuxiang Zhu, Yunnan University, China