Chiral resolution, also known as enantiomeric resolution, is a stereochemical technique that separates racemic substances into their enantiomers. It is a critical tool in the manufacture of optically active molecules, including medicines. Optical resolution is another phrase for the same thing. The downside of using chiral resolution to generate enantiomerically pure molecules is that at least half of the beginning racemic mixture must be discarded. One method of eliminating this waste is asymmetric synthesis of one of the enantiomers. The most typical approach for chiral resolution includes reacting the racemic mixture with chiral derivatizing agents, also known as chiral resolving agents, to produce a pair of diastereomeric derivatives. The derivatives are then separated by ordinary crystallisation and converted back to the enantiomers by removing the resolving agent. The method is time-consuming and is dependent on the diastereomers' differential solubilities, which are difficult to anticipate. Often, the less soluble diastereomer is sought, while the other is discarded or racemized for reuse. It is typical to test many resolving agents. A typical derivatization includes the production of a salt between an amine and a carboxylic acid. Simple deprotonation then provides the pure enantiomer. Tartaric acid and the amine brucine are two examples of chiral derivatizing agents. Louis Pasteur reintroduced the method (again) in 1853 by resolving racemic tartaric acid with optically active (+)-cinchotoxine.
Title : A desirable framework for establishing a resource circulation society
Dai Yeun Jeong, Jeju National University, Korea, Republic of
Title : Design of efficient and stable structured catalysts for biofuels transformation into syngas by using advanced technologies of nanocomposite active components synthesis, supporting on heat conducting substrates and sintering
Vladislav Sadykov, Novosibirsk State University, Russian Federation
Title : Dipotassium cobalt pyrophosphate: From solid-state synthesis to the assessment of K2CoP2O7 for the oxidative degradation of methylene blue
Nora Elouhabi, Ibn Tofail University, Morocco
Title : Personalized and Precision Medicine (PPM) as a unique healthcare model through Bi-odesign-Inspired Bio- and chemical engineering applications to secure the human healthcare and biosafety: Engineering of biocatalysts - from evolution to creation
Sergey Suchkov, R&D Director of the National Center for Human Photosynthesis, Mexico
Title : Enhanced photocatalytic activities of NaLi1.07Co2.94(MoO4)5 nanoparticles under solar light
Rawia Nasri, University of Tunis El Manar, Tunisia
Title : Sulfur-doped geometry-tunable carbon nitride nanotubes with high crystallinity for visible light nitrogen fixation
Yuxiang Zhu, Yunnan University, China