Optimising the coordination environment and quantity of low-coordination atoms can improve the electrocatalytic activity of nanomaterials. By modifying the electron transport characteristics, atomic configuration, and molecule structure in a confined area, confinement engineering is the most effective method for precisely synthesising electrocatalysts. Both the physicochemical characteristics of electrocatalysts and the coordination environments are regulated in order to change the process by which active centres arise. As a result, electrocatalysis performance in terms of activity, stability, and selectivity is enhanced. This includes optimising the nucleation, transportation, and stabilisation of intermediate species. A catalyst that is involved in electrochemical processes is an electrocatalyst. Chemical processes may be modified and speeded up with the help of catalyst materials, which do so without being consumed.
Title : A desirable framework for establishing a resource circulation society
Dai Yeun Jeong, Jeju National University, Korea, Republic of
Title : Design of efficient and stable structured catalysts for biofuels transformation into syngas by using advanced technologies of nanocomposite active components synthesis, supporting on heat conducting substrates and sintering
Vladislav Sadykov, Novosibirsk State University, Russian Federation
Title : Dipotassium cobalt pyrophosphate: From solid-state synthesis to the assessment of K2CoP2O7 for the oxidative degradation of methylene blue
Nora Elouhabi, Ibn Tofail University, Morocco
Title : Personalized and Precision Medicine (PPM) as a unique healthcare model through Bi-odesign-Inspired Bio- and chemical engineering applications to secure the human healthcare and biosafety: Engineering of biocatalysts - from evolution to creation
Sergey Suchkov, R&D Director of the National Center for Human Photosynthesis, Mexico
Title : Enhanced photocatalytic activities of NaLi1.07Co2.94(MoO4)5 nanoparticles under solar light
Rawia Nasri, University of Tunis El Manar, Tunisia
Title : Sulfur-doped geometry-tunable carbon nitride nanotubes with high crystallinity for visible light nitrogen fixation
Yuxiang Zhu, Yunnan University, China