Optimising the coordination environment and quantity of low-coordination atoms can improve the electrocatalytic activity of nanomaterials. By modifying the electron transport characteristics, atomic configuration, and molecule structure in a confined area, confinement engineering is the most effective method for precisely synthesising electrocatalysts. Both the physicochemical characteristics of electrocatalysts and the coordination environments are regulated in order to change the process by which active centres arise. As a result, electrocatalysis performance in terms of activity, stability, and selectivity is enhanced. This includes optimising the nucleation, transportation, and stabilisation of intermediate species. A catalyst that is involved in electrochemical processes is an electrocatalyst. Chemical processes may be modified and speeded up with the help of catalyst materials, which do so without being consumed.