HYBRID EVENT: You can participate in person at Rome, Italy or Virtually from your home or work.
Futuristic Materials for Sustainable Development

In the pursuit of sustainable development, the integration of futuristic materials holds immense promise. These materials, often leveraging cutting-edge technologies, present innovative solutions to pressing environmental challenges while offering new avenues for economic growth and societal advancement. One such material gaining traction is graphene, a single layer of carbon atoms arranged in a two-dimensional honeycomb lattice. Graphene's remarkable properties, including exceptional strength, conductivity, and flexibility, make it a versatile candidate for a wide range of applications. From enhancing the efficiency of renewable energy devices like solar cells and batteries to revolutionizing water purification processes through superior filtration capabilities, graphene holds the potential to drive significant strides in sustainability.

Additionally, researchers are exploring the possibilities offered by advanced biodegradable polymers derived from renewable sources such as plant-based materials or algae. These polymers offer comparable performance to traditional plastics but degrade harmlessly in the environment, mitigating the persistent pollution caused by conventional plastics. Furthermore, the development of self-healing materials capable of repairing damage autonomously presents a paradigm shift in infrastructure resilience and maintenance. By integrating microcapsules of healing agents or incorporating reversible chemical bonds, these materials can extend the lifespan of structures while reducing the need for frequent repairs and replacements. Embracing these futuristic materials not only fosters environmental stewardship but also stimulates economic growth through the creation of new industries and job opportunities. However, realizing their full potential requires concerted efforts from policymakers, researchers, and industry stakeholders to overcome regulatory hurdles, scale up production, and ensure accessibility to all communities.

Committee Members
Speaker at International Conference on Catalysis, Chemical Engineering and Technology 2025 - Ephraim Suhir

Ephraim Suhir

Portland State University, United States
Speaker at International Conference on Catalysis, Chemical Engineering and Technology 2025 - Thomas J J Muller

Thomas J J Muller

Heinrich-Heine-Universitat Dusseldorf, Germany
Speaker at International Conference on Catalysis, Chemical Engineering and Technology 2025 - Stanislaw Dzwigaj

Stanislaw Dzwigaj

Sorbonne University, France
Speaker at International Conference on Catalysis, Chemical Engineering and Technology 2025 - Dai Yeun Jeong

Dai Yeun Jeong

Jeju National University, Korea, Republic of
CCT 2025 Speakers
Speaker at International Conference on Catalysis, Chemical Engineering and Technology 2025 - Ephraim Suhir

Ephraim Suhir

Portland State University, United States
Speaker at International Conference on Catalysis, Chemical Engineering and Technology 2025 - Marta I Litter

Marta I Litter

University of General San Martin, Argentina
Speaker at International Conference on Catalysis, Chemical Engineering and Technology 2025 - Abdeltif Amrane

Abdeltif Amrane

Institute of Chemical Sciences of Rennes, France
Speaker at International Conference on Catalysis, Chemical Engineering and Technology 2025 - Mikhail Kashchenko

Mikhail Kashchenko

Ural'skiy Gosudarstvennyy Lesotekhnicheskiy Universitet, Russian Federation
Tags

Submit your abstract Today

Watsapp