We have an exciting playground for the development of many green and sustainable technologies by using electric potential to drive thermodynamically demanding and kinetically hindered reactions to occur under mild, nearly ambient conditions. These electrochemical technologies have already advanced significantly, which is encouraging new, intense research in the field on a variety of subjects, from conventional electrowinning and chlor-alkali electrolysis to potential future developments in electrosynthesis and energy-transformation processes. We can only just barely quench our curiosity, which will keep us breathless for many years to come, thanks to instrumental and theoretical innovations that push the limits of our knowledge and produce insights into the electrochemical systems. Innovative techniques, such as those utilising artificial intelligence, sophisticated simulation techniques, and operando analysis with light, electrons, and neutrons, help us understand, for example, the activity of peculiar molecules that arrive at the electrode surface (transport), settle down (adsorption), and shake hands (reaction), or the shifting of ions from the anode side to the cathode side when storing energy in a battery.
Title : Personalized and Precision Medicine (PPM) as a unique healthcare model via design-driven bio- and chemical engineering view of biotech
Sergey Suchkov, R&D Director of the National Center for Human Photosynthesis, Mexico
Title : Catalytic one-pot multicomponent syntheses of functional chromophores – Synthetic efficiency meets functionality design
Thomas J J Muller, Heinrich-Heine-Universitat Dusseldorf, Germany
Title : Use of iron nanomaterials for the treatment of metals, metalloids and emergent contaminants in water
Marta I Litter, University of General San Martin, Argentina
Title : The roles and capacity building of NGOs as agents responding to climate change
Dai Yeun Jeong, Jeju National University, Korea, Republic of
Title : Application of metal single-site zeolite catalysts in heterogeneous catalysis
Stanislaw Dzwigaj, Sorbonne University, France
Title : From photocatalysis to photon-phonon co-driven catalysis for inert molecules activation
Junwang Tang, Tsinghua University, China