Light Activated Electrochemistry

A flat, unstructured silicon electrode modified with an organic self-assembled monolayer (SAM) with a single ohmic contact is used in the light-activated electrochemistry (LAE) approach to spatially resolve electrochemistry. The three prerequisites for light-activated electrochemistry are that the redox couple must be covalently attached to the electrode, the semiconducting electrode must be biassed into depletion at the redox potential of the species of interest, and the silicon must be protected from oxidation with a self-assembled monolayer (SAM). It is possible to "switch on" faradaic electrochemistry at a monolayer shielded monolithic silicon electrode with micron scale resolution at any position by merely shining light there. This is known as light-activated electrochemistry.

Committee Members
Speaker at Catalysis, Chemical Engineering and Technology 2026 - Stanislaw Dzwigaj

Stanislaw Dzwigaj

Sorbonne University, France
Speaker at Catalysis, Chemical Engineering and Technology 2026 - Anne M Gaffney

Anne M Gaffney

University of South Carolina, United States
Speaker at Catalysis, Chemical Engineering and Technology 2026 - Victor Cerda

Victor Cerda

University of the Balearic Island, Spain
Speaker at Catalysis, Chemical Engineering and Technology 2026 - Marta I Litter

Marta I Litter

Sapienza University of Rome, Italy
CCT 2026 Speakers
Speaker at Catalysis, Chemical Engineering and Technology 2026 - Dae Dong Sung

Dae Dong Sung

Korea University Sejong Campus, Korea, Republic of
Speaker at Catalysis, Chemical Engineering and Technology 2026 - Enrico Paris

Enrico Paris

CREA-IT & DIAEE, Italy
Speaker at Catalysis, Chemical Engineering and Technology 2026 - Collin G Joseph

Collin G Joseph

University Malaysia Sabah, Malaysia
Speaker at Catalysis, Chemical Engineering and Technology 2026 - Nina Patel

Nina Patel

University of Bath, United Kingdom
Tags

Submit your abstract Today

Youtube
WhatsApp WhatsApp