A microemulsion is a mixture of water, oil, and an amphiphile (surfactant). This is a thermodynamically stable and optically isotropic solution. A microemulsion appears to be a homogeneous solution at the macroscopic level, but it is heterogeneous at the molecular level. The ratio of a microemulsion's components determines its internal structure at a given temperature. The internal structure of the microemulsion consists of minute oil droplets in a continuous water phase at high water concentrations (micelles). A bicontinuous phase with no clearly defined structure forms as oil concentration rises.
Catalytic cracking reduces the number of residuals and increases the quality and quantity of lighter, more desired products by breaking complicated hydrocarbons into simpler molecules.
• Microemulsion Synthesis and Characterization
• catalysts Preparation from microemulsions
• Microemulsion Catalysts
• Techniques in catalytic Cracking
Title : TiO2 photocatalytic removal of hexavalent chromium and arsenic
Marta I Litter, University of General San Martin, Argentina
Title : Application of metal single-site zeolite catalysts in heterogeneous catalysis
Stanislaw Dzwigaj, Sorbonne University, France
Title : Autoanalysis, a powerful software for laboratory automation
Victor Cerda, University of the Balearic Island, Spain
Title : Towards the carbon cyclic economy: Catalysis for CO2 conversion into fuels
Michele Aresta, Innovative Catalysis for Carbon Recycling-IC2R, Italy
Title : The limitations inherent in sustainable development and how to overcome them
Dai Yeun Jeong, Jeju National University, Korea, Republic of
Title : Phase diagrams 3D computer models as a novel tool to design the catalytic materials
Vasily Lutsyk, Russian Academy of Sciences, Russian Federation