When used specifically, the term "molecular catalysis" describes catalysis in which each component of the reaction is dissolved in a single liquid phase. In many industries where precise control over chemical reactivity is essential, molecular catalysis is a major factor. The size, composition, and reactivity of molecular catalysts are highly modifiable. Comparative studies that focus on the effects of particular structural or electronic changes to the catalyst on reactivity are made possible thanks to the ease with which the properties of molecular catalysts can be altered, or their tunability, in comparison to other types of catalysts (such as solid-state catalysts). Numerous molecular catalysts are organometallic, which means they contain ligands—organic molecules that are bonded to a metal and can be changed or chemically altered to speed up reactions—that are often interchangeable.
Title : Personalized and Precision Medicine (PPM) as a unique healthcare model via design-driven bio- and chemical engineering view of biotech
Sergey Suchkov, R&D Director of the National Center for Human Photosynthesis, Mexico
Title : Catalytic one-pot multicomponent syntheses of functional chromophores – Synthetic efficiency meets functionality design
Thomas J J Muller, Heinrich-Heine-Universitat Dusseldorf, Germany
Title : Use of iron nanomaterials for the treatment of metals, metalloids and emergent contaminants in water
Marta I Litter, University of General San Martin, Argentina
Title : The roles and capacity building of NGOs as agents responding to climate change
Dai Yeun Jeong, Jeju National University, Korea, Republic of
Title : Application of metal single-site zeolite catalysts in heterogeneous catalysis
Stanislaw Dzwigaj, Sorbonne University, France
Title : From photocatalysis to photon-phonon co-driven catalysis for inert molecules activation
Junwang Tang, Tsinghua University, China