In contrast to a covalent bond, a non-covalent interaction in chemistry involves more dispersed types of electromagnetic interactions between molecules or within a molecule and does not share electrons. A typical range for the chemical energy released during the formation of non-covalent interactions is 1 to 5 kcal/mol. A variety of categories, including electrostatic, -effects, van der Waals forces, and hydrophobic effects, can be used to group non-covalent interactions. Large molecules, like proteins and nucleic acids, require non-covalent interactions to maintain their three-dimensional structure. Furthermore, they participate in numerous biological processes where big molecules temporarily but specifically bind to one another. Drug design, crystallinity, and material design, particularly for self-assembly, are all significantly influenced by these interactions.
Title : A desirable framework for establishing a resource circulation society
Dai Yeun Jeong, Jeju National University, Korea, Republic of
Title : Design of efficient and stable structured catalysts for biofuels transformation into syngas by using advanced technologies of nanocomposite active components synthesis, supporting on heat conducting substrates and sintering
Vladislav Sadykov, Novosibirsk State University, Russian Federation
Title : Dipotassium cobalt pyrophosphate: From solid-state synthesis to the assessment of K2CoP2O7 for the oxidative degradation of methylene blue
Nora Elouhabi, Ibn Tofail University, Morocco
Title : Personalized and Precision Medicine (PPM) as a unique healthcare model through Bi-odesign-Inspired Bio- and chemical engineering applications to secure the human healthcare and biosafety: Engineering of biocatalysts - from evolution to creation
Sergey Suchkov, R&D Director of the National Center for Human Photosynthesis, Mexico
Title : Enhanced photocatalytic activities of NaLi1.07Co2.94(MoO4)5 nanoparticles under solar light
Rawia Nasri, University of Tunis El Manar, Tunisia
Title : Sulfur-doped geometry-tunable carbon nitride nanotubes with high crystallinity for visible light nitrogen fixation
Yuxiang Zhu, Yunnan University, China